
Auxiliary multivariate analyses

- Linear Discriminant Analysis (LDA)
- Mantel correlation (Mantel correlogram)
- Procrustes rotation and superposition
- ANOSIM (Analysis of Similarity)
- Multivariate permutational ANOVA (PERMANOVA)
- Simper (similarity percentage)
- Variance partitioning (db-RDA)

•••

Linear Discriminant Analysis (LDA)

Note: assumption of homogeneity of withingroup covariance (see PERMANOVA) Ordination technique maximizing group separation.

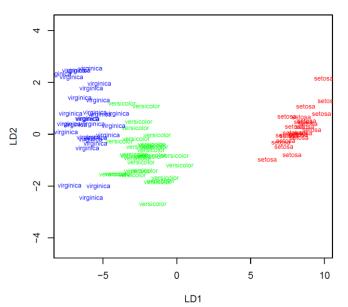
LDA uses a single variable classifying sites into groups (different to RDA & CCA).

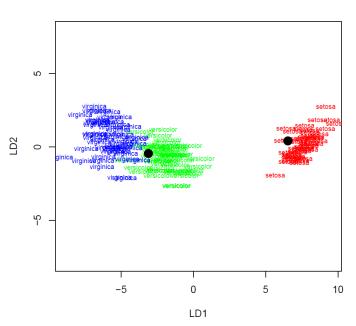
This grouping may represent a hypothesis or be obtained using cluster analysis of **another** dataset.

(important: clustering must have been obtained independently from the variables used in the LDA; otherwise the procedure would be circular)

LDA example: iris dataset

- Iris dataset: measurements of sepal and petal length and width...
- LDA on iris dataset maximizes the separation of the three species


```
>library(mass)
>iris.lda <- lda(Species~., iris)
>plot(iris.lda,
col=c("red","green","blue")[iris$Species])
```


>summary(iris.lda)

Can also be used to classify new objects:

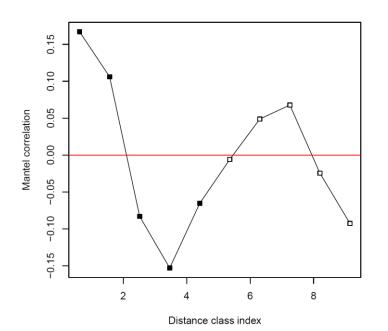
>predict.unknown.iris<-predict(iris.lda, newdata=unknown.iris)

>points(predict.unknown.iris\$x, pch=16, cex=2)

Mantel test

- test of correlation between two distance or similarity matrices
- Uses permutations to establish significance
- Different types of correlation statistics possible (e.g. Pearson, Spearman, Kendall)
- example:
 - Genetic distance between taxa
 - Environmental dissimilarity or spatial distance
 - Q: is genetic distance between taxa correlated with dissimilarity of the environment, or does genetic distance between taxa increase with increasing spatial distance?

>mantel(xdis, ydis, method="pearson", permutations=999)

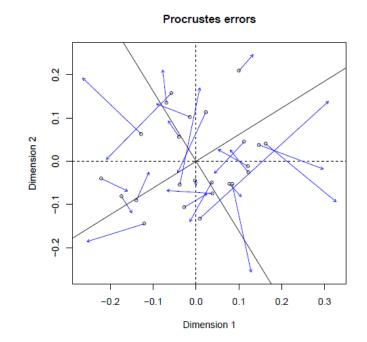

Mantel correlogram

example: mite dataset (35 mites at 70 locations, xy coordinates available)

- A correlogram is (typically) a graph in which correlation statistic (i.e. Mantel correlation) is plotted as a function of geographic distance classes (or time lags).
- => test of spatial (or temporal) autocorrelation
- In a Mantel correlogram the correlation is computed between a multivariate distance matrix (e.g. species dissimilarity) and a design matrix (typically spatial/temporal distance classes).

>mite.correlog <-mantel.correlog(mite.hel.D, XY=mite.xy, n.class=10, r.type="pearson", nperm=999, cutoff=FALSE)

```
class.index n.dist
                              Mantel.cor Pr(Mantel) Pr(corrected)
D.cl.1 0.6234366 532.0000000 0.1670561
                                          0.001
                                                    0.001 ***
D.cl.2 1.5703098 966.0000000 0.1059971
                                          0.001
                                                    0.002 **
                                                    0.003 **
                                           0.001
      2.5171829 914.0000000 -0.0830506
      3.4640561 706.0000000 -0.1529721
                                                    0.004 **
                                           0.001
                                                    0.005 **
                                           0.001
      4.4109293 522.0000000 -0.0653801
                                           0.374
                                                    0.374
      5.3578024 470.0000000 -0.0059279
      6.3046756 318.0000000 0.0488553
                                          0.026
                                                    0.052.
                                                    0.024 *
      7.2515488 236.0000000 0.0677753
                                          0.008
      8.1984220 120.0000000 -0.0244946
                                           0.217
                                                    0.434
                                                    0.015 *
D.cl.10 9.1452951 46.0000000 -0.0925184
                                           0.003
```

Procrustes analysis

- Procrustes rotation rotates (and rescales) an ordination to maximum similarity with a target ordination.
- Procrustes rotation is typically used for comparison of 2 independent ordinations (superimposition, see example).
- Allows (visual) estimation of the congruence between two ordinations (e.g. two ordinations using different taxa, or two different ordination techniques applied to the same dataset)

```
>procrustes(X, Y, scale = TRUE)
>protest(X,Y)
```

See also: co-inertia ade4::coinertia; cocoresp::coca

ANOSIM (Analysis of Similarity)

- A non-parametric (rank) test of difference (equivalent to ANOVE) between groups based on any distance/dissimilarity measure
- significance testing using permutations
- No assumption regarding normality (non-parametric);
 useful for skewed species abundance data
- example Q: are there differences in similarity between groups of samples?

```
>anosim(species_site_matrix, grouping_sites, permutations =
999, distance = "bray")
```


PERMANOVA/NPMANOVA

- Non-parametric permutation-based test of differences between two or more groups based on any distance measure
- Useful to describing how variation is attributed to different experimental treatments.
- Result depends on location of groups and group dispersion. Location and dispersion effects can be confounded: differences may be caused by different within-group variation (dispersion) instead of different mean values of the groups.
- Dispersion (distances of samples from group centroid) is often used for analysis of beta-diversity (betadisper in vegan).

```
>adonis2(dune ~ Management*A1, data=dune.env, permutations=99)
```

>betadisper(d, group, type = c("centroid"), bias.adjust = FALSE)

Note: betadisper can be used to check assumption in LDA!

PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing?

Marti J. Anderson^{1,3} and Daniel C. I. Walsh²

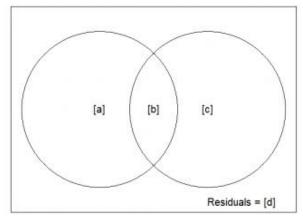
¹New Zealand Institute for Advanced Study (NZIAS), Massey University, Albany Campus, Private Bag 102 904, Auckland 0745 New Zealand

²Institute of Natural and Mathematical Sciences (INMS), Massey University, Albany Campus, Private Bag 102 904, Auckland 0745 New Zealand

Permanova typically the most powerful and robust technique (compared to Mantel test and ANOSIM) to test for differences in community structure.

Simper (similarity percentage)

- Method for assessing which taxa are primarily responsible for an observed difference between groups of samples.
- Typically used with Bray-Curtis similarity.
- Example: there are two groups of samples which taxa contribute to dissimilarity between samples?


>simper(comm, group, permutations=999)

Variance partitioning (db-RDA)

- Can be used to explain the relative importance (% variance explained) between two or more two sets of explanatory variables (see constrained ordinations).
- Common example: Q: how much variation in a species dataset is explained by the environment compared to spatial distance?
- Results can be visualized using Venn diagram

Venn diagram

- >browseVignettes("vegan") -> partitioning
- >var_part_results<-varpart(Y,X1,X2, data)</pre>
- >showvarparts(var_part_results)

- [a] variation explained by dataset X1
- [c] variation explained by dataset X2
- [b] shared variation explained by both
- [d] unexplained variation.

Note: for spatial data, consider ordination of the spatial relationships among sampling locations using "spatial eigenvectors (e.g. PCNM, MEM)

